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Central haemodynamic variables

The pressure in the arterial system – the blood pressure (BP) – is
the combined result of the pumping of blood from the heart into
the arteries (cardiac output – CO), and the resistance against the blood
flow through the vascular system (total peripheral resistance – TPR). The
relationship between blood pressure, cardiac output, and total peripheral
resistance may be expressed as: 

BP ≈ CO × TPR (equation 1)

or, since the cardiac output is the product of the blood volume ejected
by each stroke (stroke volume – SV) and the number of strokes per time
unit (heart rate – HR), as:

BP ≈ SV × HR × TPR (equation 2).

A large group of vascular, humoral, hormonal, neural, and other factors
all interact via the components of the haemodynamic equation in their
collective control of blood pressure. 
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A b s t r a c t

Invasive data on central haemodynamics in healthy normotensive subjects are
scarce, and studies in hypertensives are limited as well. A summary
of the available data on central haemodynamics in hypertensives and nor-
motensives in the same age groups is presented. Hypertension reflects
a disturbance in the balance between cardiac output (CO) and total peripheral
resistance (TPR), ranging from a pattern of high CO and normal TPR in young
age and early hypertension, to a normal-to-low CO and high TPR in more
established hypertension. An early sign of impairment of cardiac pump function
in hypertension is most readily seen in stroke volume, particularly during
exercise. Drug therapy may reduce blood pressure in hypertensives by reducing
CO, TPR, or both. Ideally a perfect antihypertensive agent should be able to
reduce blood pressure to normal level by reducing TPR and restoring normal
cardiac pump function both at rest and during exercise. But so far, no ideal drug
has been found that can fully normalize the haemodynamic disturbance
of hypertension.
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In the steady state blood pressure shows a slight
oscillating pattern due to respiration and reflex
mechanisms but the overall level of blood pressure
during an undisturbed resting situation is still quite
stable. Conditions such as change in body position,
physical activity, respiration, mental stress, transition
from sleep to wakefulness, and effects of nicotine
or drugs may lead to instant and large changes in
blood pressure. At the end of physical and/or mental
excitement the blood pressure rapidly returns to its
usual level. Thus, as actually emphasized by the
inventor of the sphygmomanometer, Scippione 
Riva Rocci in 1896, a clinically useful blood pressure
must be recorded under strictly standardized
conditions [1].

The blood pressure may also increase more
slowly to reach an abnormal high level, i.e.
hypertension, either by known or by unknown
mechanisms (secondary or primary hypertension).
However, any change in blood pressure, whether
acute or chronic, must be expressed by a change
in one or more of the three components on
the right side of the equation sign in equation 2:
SV, HR, or TPR. Thus, hypertension can be defined
as a haemodynamic disorder which reflects
a disturbance in the balance between cardiac
output and total peripheral resistance.

Methods of central haemodynamic
measurements

For haemodynamic purposes the most precise
measurement of blood pressure is obtained by
intra-arterial recording using a pressure transducer
which permits detection of immediate beat-by-beat
pressure changes, e.g. during physical exercise or
by other interventions. 

The most reliable methods of cardiac output
measurements are the dye dilution and the
thermodilution techniques [2, 3]. One advantage
of the dye dilution technique using cardiogreen
(indocyanine) is its usefulness both at rest and during
exercise, with repeatability in the order of 5% [3].
Limitations are that the technique is invasive and
gives the mean value over 10 to 30 s (not
beat-to-beat values). Cardiac output is expressed as
volume per time unit, usually l/min, and may in turn
be used to calculate the stroke volume when
the heart rate is known (preferably by electro-
cardiogram):

SV = CO/HR (equation 3).

Total peripheral resistance is derived by
calculation as the ratio between the mean arterial
pressure and cardiac output:

TPR = BP/CO (equation 4).

The total peripheral resistance in equation 4 is
usually transformed by a constant (1332) to be
expressed by the unit•dyn•s•cm–5. Indexed values
for TPR, CO and SV, allowing comparison of results
between different trial populations and between
different laboratories, are obtained by relating data
to body surface area (BSA). The corresponding
variables are designated cardiac index (CI), stroke
index (SI), and total peripheral resistance index (TPRI).

The exact nature of total peripheral resistance is
still uncertain. Strictly, calculation of total peripheral
resistance according to equation 4, which is based
on Poiseuille’s law, is only applicable to a steady,
non-pulsatile flow through rigid tubes. It is
presumed that vascular resistance is mainly
determined by the diameter of the arterioles and
that changes in resistance reflect changes in
cross-sectional vascular area. As discussed by
Folkow, even minute changes in diameter may cause
large differences in resistance [4]. Mulvany and
co-workers have been able, in isolated arterioles, to
directly study factors that may be of importance in
the control of arteriolar diameter [5].

Central haemodynamics of normotension

Invasive central haemodynamic measurements
have been carried out only in a limited number
of small-scale studies in healthy, normotensive
subjects, mostly in men aged 20-40 years [6-12]. The
total number of individuals in these studies is
approximately 200. The weighted mean values
of the haemodynamic variables in the resting supine
position from these studies are shown in Table I.

Cross-sectional studies from most industrialized
countries have shown that blood pressure, parti-
cularly systolic arterial pressure, increases with age
[13-15]. There is also some increase in diastolic
arterial pressure but it reaches a peak at the age
of 60 and then levels off or even tends to fall slightly.
The pattern of increasing blood pressure with age
is modified by factors such as obesity and physical
activity and it is also slightly different between
the two genders, with more marked increase in
systolic arterial pressure in women compared with
men after the age of 50 [15, 16]. Most invasive

TTaabbllee  II..  Central haemodynamics at rest supine in
normotensive subjects. Mean values from 7 studies

MMeeaann  aarrtteerriiaall  pprreessssuurree  ((MMAAPP**))  [[mmmm  HHgg]] 85.6

CCaarrddiiaacc  iinnddeexx  ((CCII))  [[ll//mmiinn//mm22]] 3.30

TToottaall  ppeerriipphheerraall  rreessiissttaannccee  iinnddeexx  ((TTPPRRII))  2118
[[ddyynn••ss••ccmm––55••mm22]]

HHeeaarrtt  rraattee  ((HHRR))  [[bbeeaattss//mmiinn]] 66.7

SSttrrookkee  iinnddeexx  ((SSII))  [[mmll//ssttrrookkee//mm22]] 51.1

*MAP = DAP + 1/3 (SAP – DAP); in invasive studies MAP is obtained by
electrical damping of the intra-arterial pressure curve [7]
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studies have shown that the increase in blood
pressure at higher age is due to an increase in total
peripheral resistance, while stroke volume and
cardiac output are reduced [7, 17-21]. However, in
normotensive subjects between the ages of 18 to 50
years haemodynamic data from cross-sectional
studies are rather similar in young and older age
groups. Age-related changes in central haemo-
dynamic variables from a cross-sectional study in
normotensive and hypertensive subjects from our
laboratory are shown in Figure 1 [7]. 

In agreement with the cross-sectional data,
a study from Sweden in young men showed that
there were virtually no changes in blood pressure,
heart rate, cardiac output, or total peripheral
resistance over a 5-year follow-up period [7, 12].

Exercise is used in clinical practice for evaluation
of cardiac pump function. However, systematic
haemodynamic studies in normotensive subjects
using invasive techniques during exercise are
scarce. In a study in 33 normotensive men aged
19-49 years (mean 31) from our laboratory there

was found an increase in systolic arterial pressure
(SAP) of 34.3 mm Hg at a steady state dynamic
(bicycle) work load of 100 W compared to the resting
sitting situation [7]. The corresponding increase in
diastolic arterial pressure (DAP) was 3.8 mm Hg.
Cardiac index increased by 6.0 l/min/m2, SI
28.4 ml/stroke/m2, and HR 53 beats/min. The TPRI
fell by 1308 dyn•s•cm–5•m2 (Figure 2).

Central haemodynamics of essential
hypertension

In nearly all the studies performed in
middle-aged subjects with established, uncom-
plicated hypertension, the cardiac output during
rest has been normal or slightly reduced while
the total peripheral resistance has been increased.
Increased total peripheral resistance is referred to
as the hallmark of hypertension, and the resistance
has been found increased in all vascular beds (renal,
cerebral, pulmonary, myocardial, splanchnic,
muscular and skin) in clinical as well as in
experimental hypertension [22-30].
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FFiigguurree 11..  Cross-sectional study of central haemodyna-
mics in normotensive subjects (NT; light bars) and
patients with hypertension (HT; dark bars). The figure
shows data in the resting sitting position from
4 different age groups. The units used are: Cardiac index
= l/min/m2, Heart rate = beats/min, Mean arterial
pressure = mm Hg, Stroke index = ml/min/m2, Total
peripheral resistance index = dyn•s•cm–5•m2. Adapted
from ref. [7]
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Central haemodynamics of hypertension

Regarding the starting phase of essential
hypertension most invasive studies in young men
(18-30 years) have demonstrated an increased
cardiac output (about 15% higher than in age-
matched normotensive controls) due to increased
heart rate and normal stroke volume (Figure 3) [6-
12]. These haemodynamic disturbances are thought
to be due to hyperactivity in the sympathetic
nervous system [31, 32].

In children with different blood pressure levels
there is no consistent evidence for an increase in
cardiac output in those with the highest pressures
– so it is still uncertain whether the increased cardiac
output seen in young males with blood pressure
above 140/90  mm HG really represents the cardinal
haemodynamic disturbance in the early phase [33-35].

AAggee::  ccrroossss--sseeccttiioonnaall  ddaattaa

The age-related increase in mean arterial
pressure in hypertensives is due to a progressive
increase in total peripheral resistance, which at
the age of 50 may be almost twice the value seen
at the age of 20 (Figure 1). Cardiac output, which in
the resting condition often is increased by 15-20%
in young hypertensives, is reduced at higher age.
The progressive decline in cardiac output with age
in patients with hypertension is associated with
reduction in stroke volume, while heart rate remains
increased by 6-10 beats/min compared with
normotensive subjects up to the age of 50-60 years. 

The true nature of the reduction in cardiac pump
function over the years seen in hypertension is not
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FFiigguurree 22.. Central haemodynamics in young
hypertensive (HT) men and in the same subjects
20 years later (HT – 20) in comparison with age-
matched normotensive (NT) controls. CI – cardiac
index, HR – heart rate, MAP – mean arterial pressure,
SI – stroke index, TPRI – total peripheral resistance
index. Units as in Figure 1. VO2 – oxygen con-

sumption, ml/min/m2 (measured by the Douglas bag
technique [7]). Data shown at the lowest VO2 values
represent measurements at rest sitting while
the remaining data show measurements during
steady state dynamic exercise at 50, 100, and
150 W, respectively. Adapted from ref. [7], [20], [21]



readily apparent. In a group of offspring (mean
age 40) from parents who at a national health
screening 27 years earlier had a blood pressure
above 140/90 mm Hg, a shift of left ventricular
diastolic filling from early to late diastole was seen
when compared to offspring from parents who
were normotensive both at the screening and at
the time of the current study [36]. Similar findings
have been made in other studies, suggesting
increased left ventricular stiffness and reduced
ventricular filling rate even before development
of left ventricular hypertrophy [34, 37-39]. 

AAggee::  lloonnggiittuuddiinnaall  ddaattaa

Most follow-up studies on spontaneous changes
in central haemodynamics have been of short
duration – typically 2-5 years [10, 12, 20, 21, 40-44].
Generally the blood pressure remained unchanged
while the cardiac output decreased and total
peripheral resistance in most cases showed an
increase. Also during a longer follow-up period 
(10 years) similar results were found [20, 44]. As in
the cross-sectional studies, the reduction in cardiac
output was associated with a reduction in stroke
volume in the order of 15% while heart rate was
almost unchanged. Thus, the progressive decrease
in cardiac pump function with age in hypertensives
as suggested from the cross-sectional studies is
also seen in longitudinal follow-up in individual
patients. 

A second restudy – with identical invasive
methods as in studies 1 and 2 – after a total of
20 years from their first haemodynamic study – has
also been performed in our laboratory [20, 21, 44].
The principal results were further increases in
systolic and diastolic blood pressures associated
with an increase in total peripheral resistance and
further reductions in cardiac output and stroke
volume (Figure 2) [21].

EExxeerrcciissee

Severe muscular exercise increases cardiac
output by 300% or more, and dramatically changes
the distribution of blood flow in the body – mainly
by a large increase in the proportion of the blood
flow to working muscles, including the myocardium.
Thus, while it could be difficult to detect minor
disturbances in the circulatory system in mild
hypertensives vs. normotensive subjects in the rest
situation, such haemodynamic differences could be
more clearly unveiled during exercise – when
the circulatory system is really challenged. 

Several comparative haemodynamic studies
during exercise between hypertensives and normal
age-matched controls have been carried out in
the past [7, 45-48]. In subjects between ages 18
and 30 years with mild or borderline hypertension,
the rise in blood pressure during ergometer cycling
with increasing loads was parallel to what was seen
in the normotensive controls. The heart rate was
slightly higher. 

Surprisingly, in transition from rest to exercise
(in the sitting position on an ergometer bicycle)
the stroke volume did not increase to the same
levels as in the normotensive controls [7]. In a study
from our laboratory the stroke index in the
hypertensive patients was approximately 15% lower
than in normotensive controls during all exercise
levels (50, 100 and 150 W). Thus, cardiac index
during exercise was no longer higher than in
normotensive controls, but actually significantly
subnormal, particularly during strenuous exercise
(150 W). The oxygen consumption was similar, and
as a consequence the arteriovenous oxygen
difference was increased. Total peripheral
resistance, which was numerically normal in
the youngest group at rest, was significantly higher
than normal at all exercise levels and also in the
older age groups (Figure 2). 

Muscular exercise increases the workload on
the heart and the myocardial oxygen need. The
product of HR x SAP is a clinically useful index
of myocardial oxygen demand [49]. When
the rate-pressure product is compared in hyper-
tensives and normotensives of similar age it is seen
that in the hypertensive groups the rate-pressure
product is similar at rest to what normotensives are
exposed to during 50 W exercise (Figure 4) [50]. This
illustrates the chronic increased burden on
the hypertensive heart even at rest. 

Hypertension is a well-known risk factor for
heart failure. In subjects with very severe
hypertension it was demonstrated that the cardiac
index was markedly reduced compared to
normotensive controls and also compared to
subjects with mild hypertension [51]. When going
from moderate to severe exercise, stroke index
actually decreased. This was seen in subjects with
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FFiigguurree 33.. Central haemodynamic variables in young
subjects with mild essential hypertension. Data are
shown in percent compared with normotensive (NT)
subjects (dotted line = 100%) and are the weighted
mean values for the supine position at rest from
7 studies in a total of 189 normotensive subjects and 222
hypertensives [8-14]. Legends as in Figures 1 and 2
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no clinical symptoms of heart failure, but these
findings could be interpreted as an indication
of incipient cardiac failure [7]. Studies from other
laboratories have shown that the cardiac index in
relation to the filling pressure is reduced in patients
with relatively severe hypertension [48].

The most important conclusions from the
exercise studies are that subclinical changes occur
in cardiac pump function and vessel resistan-ce very
early in subjects with mild, uncomplicated essential
hypertension. As first pointed out by Tarazi et al.,
one mechanism responsible for the reduction in
the pump function is reduced compliance of the left
ventricular wall [52-54]. Studies of heart pump
function at rest by echo-Doppler method in subjects
with very mild hypertension have revealed a slight
degree of left ventricular hypertrophy, and diastolic

TTaabbllee  IIII.. One-year central haemodynamic changes [%] induced by different classes of antihypertensive drugs or low
sodium diet. Observations at rest sitting

NNuummbbeerr MMAAPP TTPPRRII CCII SSII HHRR
((113300  mmmm ((33990055  ddyynn•• ((22..7733  ll// ((3377..44  mmll// ((7733..22  

HHgg))** ss••ccmm––55••mm22)) mmiinn//mm22)) mmiinn//mm22)) bbeeaattss//mmiinn))

β-blockers n=7, N=87 –12.8 12.9 –24.2 –3.0 –22.0

Low sodium diet n=3, N=46 –2.5 7.4 –13.4 –3.5 –9.6

Diuretics n=4, N=45 –17.7 –6.9 –11.5 –12.3 0.7

Multiple action n=4, N=52 –15.6 –6.9 –9.9 2.5 –8.2

ACE inhibitors n=3, N=43 –16.4 –13.9 –3.3 –0.9 –1.5

AT1-blockers n=1, N=28 –9.5 –11.5 0.9 3.6 –0.9

Ca antagonists n=7, N=111 –13.9 –15.6 1.7 4.3 –2.8

α-blockers n=3, N=38 –11.9 –17.7 5.5 5.7 0.6

n – studies, N – patients
*The data in parentheses show overall mean haemodynamic values before treatment in 450 patients with hypertension from 32 studies. Abbreviations
as in Figure 2

TTaabbllee  IIIIII..  One-year central haemodynamic changes [%] induced by different classes of antihypertensive drugs or low
sodium diet. Observations during 100 W dynamic exercise

NNuummbbeerr MMAAPP TTPPRRII CCII SSII HHRR
((114477  mmmm ((11669955  ddyynn•• ((77..0077  ll// ((5544..77  mmll// ((113322..99  

HHgg))** ss••ccmm––55••mm22)) mmiinn//mm22)) mmiinn//mm22)) bbeeaattss//mmiinn))

β-blockers n=7, N=87 –12.3 6.6 –17.9 –6.2 –22.6

Low sodium diet n=3, N=46 –2.6 0.0 –6.0 –1.5 –5.0

Diuretics n=4, N=45 –14.7 –9.7 –7.0 –5.9 –1.8

Multiple action n=4, N=52 –15.5 –5.1 –7.7 9.1 –15.9

ACE-inhibitors n=3, N=43 –13.4 –6.0 –7.0 -5.4 –0.5

AT1-blockers n=1, N=28 –8.0 –14.5 6.1 9.1 –2.1

CA-antagonists n=7, N=111 –11.3 –10.4 –2.2 2.0 –3.8

α-blockers n=3, N=38 –11.5 –16.5 4.9 4.0 –0.9

n – studies, N – patients
*The data in parentheses show overall mean haemodynamic values before treatment in 450 patients with hypertension from 32 studies. 
Abbreviations as in Figure 2.
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FFiigguurree 44.. The rate-systolic arterial pressure product
(SAPxHR) at rest (plain bars) and during steady state 50
W bicycle exercise (hatched bars) in normotensive
subjects (light grey) and hypertensive patients (dark
grey) in three age groups, respectively: I – 18-29
years, II – 30-39 years, III – 40-49 years. Adapted 
from ref. [50]
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dysfunction characterised by reduction in
the E/A ratio. This indicates that the filling of the left
ventricle is slightly reduced and more dependent
on the atrial contraction in hypertension than in
normals.

Pathophysiology of hypertension

The cause(s) of hypertension has been sought
during the whole of the last century. Except for
the limited group of patients in whom a defined
disease process can be found to account for
hypertension, most patients are still classified as
having a form of hypertension without known
cause: i.e. primary or essential hypertension.

According to the mosaic theory, originally
proposed by Irvine Page more than half a century
ago, primary hypertension may be caused by
disturbance of one or more of a number of control
mechanisms for blood pressure [55]. However, as
discussed above, any mechanism or group
of mechanisms that eventually may be shown to
explain elevation of mean arterial pressure must be
expressed by changes in either cardiac output
and/or total peripheral resistance. Thus, central
haemodynamic variables are cornerstones in
the understanding of how hypertension may
develop. Since a rise in total peripheral resistance
seems to be of fundamental importance in
the development of hypertension, research efforts
have been directed towards components essential
in the control of constriction and/or relaxation
of arteriolar smooth muscles.

AAnnttiihhyyppeerrtteennssiivvee  ddrruugg  tthheerraappyy

Measurements of central haemodynamics have
been a useful tool in understanding the mechanisms
of action of antihypertensive agents [56, 57].
Conversely, by pharmacological challenging
of haemodynamic variables drugs have been used
to expose underlying haemodynamic mechanisms
of hypertension and thus serve as tools to
investigate the pathophysiology of the disease.
Tables II and III show the overall data from 32
invasive studies in our laboratory on central
haemodynamic changes at rest and during exercise
at 100 W induced by 1-year treatment by the major
drug classes of antihypertensive drugs. Data from
studies on non-drug treatment by salt restriction are
also included. The total number of patients in these
studies is 450. In the tables the treatment regimens
are ranked according to the cardiac index response
at rest sitting. 

The tables demonstrate that the modern selection
of antihypertensive agents offers the possibility to
modulate central haemodynamics of hypertension
ranging from fall in blood pressure due to marked
reduction in cardiac output, which is partly counte-

racted by some increase in total peripheral resis-tance,
to vasodilatation with reduction in total peripheral
resistance, and, in some cases, a small increase in
cardiac output (Tables II, III). However, the tables also
show that there is still a considerable gap between
treated hypertension and normotension and thus that
none of the available drug classes are even close to
fully normalizing the central haemodynamic
disturbances of hypertension.

Nine months of salt restriction induced a small
reduction in blood pressure due to reduction in
cardiac output, while total peripheral resistance
actually tended to increase [58] (Tables II, III). This
failure to normalize central haemodynamics might
be due to the stimulating effect of sodium
deprivation on the renin-angiotensin system and
may serve as a counter-regulatory mechanism
preventing excessive blood pressure fall [59, 60].

Some large-scale antihypertensive drug trials
have shown that ACE inhibitors and angiotensin
receptor-1 blockers are particularly effective in
reducing left ventricular hypertrophy and also that
development of congestive heart failure and other
clinical end-points is reduced compared with other
drugs [61]. However, full normalization of left
ventricular geometry is usually not seen [62]. It is
unknown whether this observation and the gap
between normal and on-drug central haemodynamic
pattern in patients with hypertension are linked, but
from a haemodynamic point of view it is obvious
that there is still a great potential for improvements
in antihypertensive treatment.
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